Bisection Method of Solving a Nonlinear Equation
Autar Kaw

After reading this chapter, you should be able to:

1. follow the algorithm of the bisection method of solving a nonlinear equation,
2. use the bisection method to solve examples of finding roots of a nonlinear equation, and
3. enumerate the advantages and disadvantages of the bisection method.

What is the bisection method and what is it based on?
One of the first numerical methods developed to find the root of a nonlinear equation \(f(x) = 0 \) was the bisection method (also called binary-search method). The method is based on the following theorem.

Theorem

An equation \(f(x) = 0 \), where \(f(x) \) is a real continuous function, has at least one root between \(x_l \) and \(x_u \) if \(f(x_l)f(x_u) < 0 \) (See Figure 1).

Note that if \(f(x_l)f(x_u) > 0 \), there may or may not be any root between \(x_l \) and \(x_u \) (Figures 2 and 3). If \(f(x_l)f(x_u) < 0 \), then there may be more than one root between \(x_l \) and \(x_u \) (Figure 4). So the theorem only guarantees one root between \(x_l \) and \(x_u \).

Bisection method

Since the method is based on finding the root between two points, the method falls under the category of bracketing methods.
Since the root is bracketed between two points, x_l and x_u, one can find the midpoint, x_m between x_l and x_u. This gives us two new intervals

1. x_l and x_m, and
2. x_m and x_u.

Figure 1 At least one root exists between the two points if the function is real, continuous, and changes sign.
Figure 2 If the function \(f(x) \) does not change sign between the two points, roots of the equation \(f(x) = 0 \) may still exist between the two points.

Figure 3 If the function \(f(x) \) does not change sign between two points, there may not be any roots for the equation \(f(x) = 0 \) between the two points.
The steps to apply the bisection method to find the root of the equation $f(x) = 0$ may exist between the two points.

Is the root now between x_l and x_m or between x_m and x_u? Well, one can find the sign of $f(x_l)f(x_m)$, and if $f(x_l)f(x_m) < 0$ then the new bracket is between x_l and x_m, otherwise, it is between x_m and x_u. So, you can see that you are literally halving the interval. As one repeats this process, the width of the interval $[x_l, x_u]$ becomes smaller and smaller, and you can zero in to the root of the equation $f(x) = 0$. The algorithm for the bisection method is given as follows.

Algorithm for the bisection method

The steps to apply the bisection method to find the root of the equation $f(x) = 0$ are

1. Choose x_l and x_u as two guesses for the root such that $f(x_l)f(x_u) < 0$, or in other words, $f(x)$ changes sign between x_l and x_u.
2. Estimate the root, x_m, of the equation $f(x) = 0$ as the mid-point between x_l and x_u as

 $$ x_m = \frac{x_l + x_u}{2} $$
3. Now check the following
 a) If \(f(x_i) f(x_m) < 0 \), then the root lies between \(x_i \) and \(x_m \); then \(x_i = x_i \) and \(x_m = x_m \).
 b) If \(f(x_i) f(x_m) > 0 \), then the root lies between \(x_m \) and \(x_u \); then \(x_i = x_m \) and \(x_u = x_u \).
 c) If \(f(x_i) f(x_u) = 0 \); then the root is \(x_m \). Stop the algorithm if this is true.
4. Find the new estimate of the root
 \[x_m = \frac{x_i + x_u}{2} \]

Find the absolute relative approximate error as

\[|\varepsilon_a| = \left| \frac{x_m^{\text{new}} - x_m^{\text{old}}}{x_m^{\text{new}}} \right| \times 100 \]

where

\[x_m^{\text{new}} = \text{estimated root from present iteration} \]
\[x_m^{\text{old}} = \text{estimated root from previous iteration} \]

5. Compare the absolute relative approximate error \(|\varepsilon_a| \) with the pre-specified relative error tolerance \(\varepsilon_s \). If \(|\varepsilon_a| > \varepsilon_s \), then go to Step 3, else stop the algorithm.

Note one should also check whether the number of iterations is more than the maximum number of iterations allowed. If so, one needs to terminate the algorithm and notify the user about it.

Example 1

You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC commodes. The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm. You are asked to find the depth to which the ball is submerged when floating in water.

The equation that gives the depth \(x \) to which the ball is submerged under water is given by

\[x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0 \]

Use the bisection method of finding roots of equations to find the depth \(x \) to which
the ball is submerged under water. Conduct three iterations to estimate the root of the above equation. Find the absolute relative approximate error at the end of each iteration, and the number of significant digits at least correct at the end of each iteration.

Solution
From the physics of the problem, the ball would be submerged between $x = 0$ and $x = 2R$, where

$$R = \text{radius of the ball},$$

that is

$$0 \leq x \leq 2R$$

$$0 \leq x \leq 2(0.055)$$

$$0 \leq x \leq 0.11$$

Figure 5 Floating ball problem.

Let's us assume

$$x_i = 0, x_u = 0.11$$
Check if the function changes sign between \(x_l \) and \(x_u \).

\[
f(x_l) = f(0) = (0)^3 - 0.165(0)^2 + 3.993 \times 10^{-4} = 3.993 \times 10^{-4}
\]

\[
f(x_u) = f(0.11) = (0.11)^3 - 0.165(0.11)^2 + 3.993 \times 10^{-4} = -2.662 \times 10^{-4}
\]

Hence

\[
f(x_l) f(x_u) = f(0) f(0.11) = (3.993 \times 10^{-4})(-2.662 \times 10^{-4}) < 0
\]

So there is at least one root between \(x_l \) and \(x_u \), that is between 0 and 0.11.

Iteration 1

The estimate of the root is

\[
x_m = \frac{x_l + x_u}{2}
\]

\[
= \frac{0 + 0.11}{2}
\]

\[
= 0.055
\]

\[
f(x_m) = f(0.055) = (0.055)^3 - 0.165(0.055)^2 + 3.993 \times 10^{-4} = 6.655 \times 10^{-5}
\]

\[
f(x_l) f(x_u) = f(0) f(0.055) = (3.993 \times 10^{-4})(6.655 \times 10^{-4}) > 0
\]

Hence the root is bracketed between \(x_m \) and \(x_u \), that is, between 0.055 and 0.11. So, the lower and upper limit of the new bracket is

\[
x_l = 0.055, x_u = 0.11
\]

At this point, the absolute relative approximate error \(|\varepsilon_u| \) cannot be calculated as we do not have a previous approximation.

Iteration 2

The estimate of the root is

\[
x_m = \frac{x_l + x_u}{2}
\]
\[
\frac{0.055 + 0.11}{2} = 0.0825
\]

\[
f(x_m) = f(0.0825) = (0.0825)^3 - 0.165(0.0825)^2 + 3.993 \times 10^{-4} = -1.622 \times 10^{-4}
\]

\[
f(x_u)f(x_m) = f(0.055)f(0.0825) = (6.655 \times 10^{-5}) \times (-1.622 \times 10^{-4}) < 0
\]

Hence, the root is bracketed between \(x_l \) and \(x_m \), that is, between 0.055 and 0.0825. So the lower and upper limit of the new bracket is

\[
x_l = 0.055, \quad x_u = 0.0825
\]

The absolute relative approximate error \(|\varepsilon_r| \) at the end of Iteration 2 is

\[
|\varepsilon_r| = \left| \frac{x_m^{\text{new}} - x_m^{\text{old}}}{x_m^{\text{new}}} \right| \times 100
\]

\[
= \left| \frac{0.0825 - 0.055}{0.0825} \right| \times 100
\]

\[
= 33.33\%
\]

None of the significant digits are at least correct in the estimated root of \(x_m = 0.0825 \) because the absolute relative approximate error is greater than 5%.

Iteration 3

\[
x_m = \frac{x_l + x_u}{2}
\]

\[
= \frac{0.055 + 0.0825}{2}
\]

\[
= 0.06875
\]

\[
f(x_m) = f(0.06875) = (0.06875)^3 - 0.165(0.06875)^2 + 3.993 \times 10^{-4} = -5.563 \times 10^{-5}
\]

\[
f(x_l)f(x_m) = f(0.055)f(0.06875) = (6.655 \times 10^5) \times (-5.563 \times 10^{-5}) < 0
\]
Hence, the root is bracketed between \(x_l \) and \(x_m \), that is, between 0.055 and 0.06875. So the lower and upper limit of the new bracket is

\[
x_l = 0.055, \quad x_u = 0.06875
\]

The absolute relative approximate error \(|\varepsilon|\) at the ends of Iteration 3 is

\[
|\varepsilon| = \left| \frac{x_m^{\text{new}} - x_m^{\text{old}}}{x_m^{\text{old}}} \right| \times 100
\]

\[
= \left| \frac{0.06875 - 0.0825}{0.06875} \right| \times 100
\]

\[
= 20\%
\]

Still none of the significant digits are at least correct in the estimated root of the equation as the absolute relative approximate error is greater than 5%.

Seven more iterations were conducted and these iterations are shown in Table 1.

| Iteration | \(x_l \) | \(x_u \) | \(x_m \) | \(|\varepsilon|\)% | \(f(x_m) \) |
|-----------|--------|--------|----------|----------------|----------------|
| 1 | 0.00000 | 0.11 | 0.055 | -------- | 6.655 \times 10^{-5} |
| 2 | 0.055 | 0.11 | 0.0825 | 33.33 | \(-1.622 \times 10^{-4}\) |
| 3 | 0.055 | 0.0825 | 0.06875 | 20.00 | \(-5.563 \times 10^{-5}\) |
| 4 | 0.055 | 0.06875| 0.06188 | 11.11 | 4.484 \times 10^{-6} |
| 5 | 0.06188 | 0.06875| 0.06531 | 5.263 | \(-2.593 \times 10^{-5}\) |
| 6 | 0.06188 | 0.06531| 0.06359 | 2.702 | \(-1.0804 \times 10^{-5}\) |
| 7 | 0.06188 | 0.06359| 0.06273 | 1.370 | \(-3.176 \times 10^{-6}\) |
| 8 | 0.06188 | 0.06273| 0.0623 | 0.6897 | 6.497 \times 10^{-7} |

Source URL: http://numericalmethods.eng.usf.edu/
Saylor URL: http://www.saylor.org/courses/me205/

Attributed to: University of South Florida: Holistic Numerical Methods Institute
At the end of 10th iteration,

\[|\varepsilon_n| = 0.1721\% \]

Hence the number of significant digits at least correct is given by the largest value of \(m \) for which

\[|\varepsilon_n| \leq 0.5 \times 10^{2-m} \]

\[0.1721 \leq 0.5 \times 10^{2-m} \]

\[0.3442 \leq 10^{2-m} \]

\[\log(0.3442) \leq 2 - m \]

\[m \leq 2 - \log(0.3442) = 2.463 \]

So

\[m = 2 \]

The number of significant digits at least correct in the estimated root of 0.06241 at the end of the 10th iteration is 2.

Advantages of bisection method

a) The bisection method is always convergent. Since the method brackets the root, the method is guaranteed to converge.

b) As iterations are conducted, the interval gets halved. So one can guarantee the error in the solution of the equation.

Drawbacks of bisection method

a) The convergence of the bisection method is slow as it is simply based on halving the interval.
b) If one of the initial guesses is closer to the root, it will take larger number of iterations to reach the root.

c) If a function \(f(x) \) is such that it just touches the \(x \)-axis (Figure 6) such as

\[
f(x) = x^2 = 0
\]

it will be unable to find the lower guess, \(x_l \), and upper guess, \(x_u \), such that

\[
f(x_l)f(x_u) < 0
\]

d) For functions \(f(x) \) where there is a singularity and it reverses sign at the singularity, the bisection method may converge on the singularity (Figure 7).

An example includes

\[
f(x) = \frac{1}{x}
\]

where \(x_l = -2, \ x_u = 3 \) are valid initial guesses which satisfy

\[
f(x_l)f(x_u) < 0
\]

However, the function is not continuous and the theorem that a root exists is also not applicable.

Figure 6 The equation \(f(x) = x^2 = 0 \) has a single root at \(x = 0 \) that cannot be bracketed.
A singularity in a function is defined as a point where the function becomes infinite. For example, for a function such as \(\frac{1}{x} \), the point of singularity is \(x = 0 \) as it becomes infinite.

\[f(x) \]

Figure 7 The equation \(f(x) = \frac{1}{x} = 0 \) has no root but changes sign.